
Number Sense 
and Number Nonsense

Understanding the 
Challenges of Learning Math

by 

Nancy Krasa, Ph.D. 

and 

Sara Shunkwiler, M.Ed.

Baltimore • London • Sydney
Excerpted from Number Sense and Number Nonsense: Understanding the Challenges of Learning Math

by Nancy Krasa, Ph.D., & Sara Shunkwiler, M.Ed. 
Brookes Publishing | www.brookespublishing.com | 1-800-638-3775

© 2009 | All rights reserved



Contents

About the Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Section I Thinking Spatially . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2 Number Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3 Math and Spatial Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Section II The Language of Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 4 Speaking Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 5 Reading and Writing Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 6 The Brain and Conventional Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 7 More Sharks in the Mathematical Waters . . . . . . . . . . . . . . . . . . . . . . . . . 103

Section III Solving Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Chapter 8 Executive Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Chapter 9 Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Section IV Professional Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Chapter 10 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Chapter 11 Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

v
Excerpted from Number Sense and Number Nonsense: Understanding the Challenges of Learning Math

by Nancy Krasa, Ph.D., & Sara Shunkwiler, M.Ed. 
Brookes Publishing | www.brookespublishing.com | 1-800-638-3775

© 2009 | All rights reserved



About the Authors

Nancy Krasa, Ph.D., is a practicing clinical psychologist with more than 25 years’ experi-
ence in psychological, neuropsychological, and psychoeducational evaluation. She has
served on the adjunct faculties of the colleges of medicine at Cornell University, New York
University, and The Ohio State University. Dr. Krasa is a member of the International
Dyslexia Association and has published articles in the fields of psychiatric and psychoed-
ucational diagnosis. She received her bachelor of arts degree in mathematics from Smith
College and her doctorate in clinical psychology from New York University. She and her
husband live in Columbus, Ohio, and have three grown children.

Sara Shunkwiler, M.Ed., taught middle school at Marburn Academy, a private school in
Columbus, Ohio, for bright children who learn differently. She is currently teaching Pre-
Algebra and Algebra in a public school setting and has worked with many students who
have varying degrees of math difficulty. Prior to entering teaching, she was an engineer,
a career she chose when she placed third in a schoolwide algebra contest and discovered
she was “good at math.” Her team won the state competition, and the three women on
that team went on to graduate at the top of their engineering classes at The Ohio State
University. Ms. Shunkwiler also earned a master of science degree in ceramic engineering
from the University of Illinois at Urbana-Champaign. For 12 years, she worked as a prod-
uct development and test engineer with General Motors and received three United States
patents during that time. She left engineering to share her love of mathematics and sci-
ence with students in the pivotal middle school years, and she earned a master of educa-
tion degree in middle childhood mathematics and science education from The Ohio
State University. She and her husband, also a ceramic engineer, live in Frederick, Mary-
land, with their two teenage sons.

vii
Excerpted from Number Sense and Number Nonsense: Understanding the Challenges of Learning Math

by Nancy Krasa, Ph.D., & Sara Shunkwiler, M.Ed. 
Brookes Publishing | www.brookespublishing.com | 1-800-638-3775

© 2009 | All rights reserved



Preface

In the early fall a few years ago, a college senior named Abby showed up in tears to my psy-
chology practice for a diagnostic evaluation. She was a hard-working honor student and
respected peer tutor in English, but there was a good chance that she would not gradu-
ate. Why? To receive a degree from her college, she was required to pass one class of pre-
calculus level mathematics. 

Abby had struggled with math throughout her elementary years and, even though
she did well in her other subjects, was barely able to earn enough math credits to gradu-
ate from high school. An exam during her college orientation had placed her into a non-
credit remedial math course. After four failed attempts to pass that class, the dean re-
ferred her for an evaluation. She was frantic by the time she arrived at my office. 

What was I to make of Abby? Her predicament raised many questions. Was her math
difficulty a symptom of a disorder, as suggested by official psychiatric guidelines? If so,
what evidence was I looking for? As a psychologist, I had seen many students who did
poorly in math—in fact, many students seeking evaluations, for whatever reason, com-
plain of struggling with math. That these students had trouble with math was indis-
putable; my job was to figure out why—without knowing the source of the problem, there
would be no way to fix it. Psychiatric guidelines suggest that various cognitive impairments
can be involved. Indeed, each student, including Abby, demonstrated a unique set of cog-
nitive strengths and weaknesses. There was no pattern in their cognitive test results that
might explain what they all had in common, which was math failure. Nor was there any
clear way to understand how their individual cognitive weaknesses contributed to this
shared outcome. 

I also wondered whether Abby’s plight was qualitatively different from other students’
math challenges. Perhaps it was just the extreme end of a continuum that embraced any
number of humanities majors who were never referred for evaluation simply because they
were not required to take math. Many people, like Abby, do not like numbers and, when
possible, avoid balancing their checkbooks, calculating discounts, and doubling recipes.
And what about younger students who struggle with basic math until they are allowed to
drop it, or who still need a calculator to reckon 4 � 6, even after years of flashcards? How
prevalent are such difficulties? Some evidence suggests math troubles are pervasive: A re-
cent Google search of the phrase I suck at math turned up 53,000 hits, mostly message-
board math queries. How could I help Abby and others like her make sense of their math
difficulties, and what advice could I give to their teachers and professors? 

And so my quest began. One math curriculum expert told me that there was little re-
search on math learning disabilities, and in a strict sense she was right. A few large-scale
studies have shown, for example, that some students with math difficulties also have a
reading disorder, but that many do not, and the few existing neuropsychological studies
have been inconclusive; that was about all the available information. Moreover, one promi-
nent researcher told me that science was not close to producing assessment or educa-
tional guidelines. Indeed, in that regard, research on math impairments is at least a de-
cade behind that on dyslexia.

It quickly became clear that to understand why some people fail in math, I first had
to understand what enables most people to succeed. That is, what cognitive skills are nec-
essary for learning basic mathematics? On this topic, as it turns out, there is abundant 
research. Indeed, reviewing it has been, to borrow a phrase from Geekspeak, a bit like
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drinking from a fire hose. Scientists in animal and infant behavior, cognitive psychology
and development, education, linguistics, genetics, neuropsychology, and most recently,
neuroscience have all made preliminary though significant contributions to the field. Un-
fortunately, the research has largely remained buried in the journals of the individual ac-
ademic disciplines; consequently, these findings have been inaccessible to educators, psy-
chologists, and even to researchers across fields. Those results that have seen daylight
have emerged in books for the general reader who is curious about the mind and mathe-
matics, in texts restricted to arithmetic development in very young children, and more re-
cently, in a few scholarly essay collections. For this reason, I decided to write a book that
would integrate, for the first time, this vast body of work for practitioners who have a stake
in its contributions.

How one learns math, however, depends on what happens in the classroom, as well
as on what happens in the mind. Solving that piece of the puzzle would require the per-
spective and insights of a teacher both well versed in math and mathematical pedagogy
and experienced in teaching students with learning differences. Hence, I recruited Sara
Shunkwiler to join the project. A middle school math teacher with a special interest in
children with learning disabilities, she knew first-hand the frustration of teaching stu-
dents who, despite their hard work and her own dedication, simply could not master even
the most basic material. She readily accepted my invitation; in particular, she was eager to
make the psychological insights found in the research accessible to the classroom teacher
and to address several broad, pertinent educational issues. To this end, she wrote the
book’s final chapter and additionally provided invaluable advice on the other ten. 

Together, then, we aim to fill the literature gap with a book that asks the following
questions: What cognitive skills are necessary for doing mathematics and how do those
skills develop? Why do some people have trouble with math and how can that difficulty
be evaluated? What do the scientific findings to date imply for education? Where should
research go from here? We intend to answer these questions based on the latest scientific
data, which in most areas are still quite preliminary. 

Here are our arguments. We find that mathematics draws on three basic modes of
thought and extraordinarily complex brain circuits, comprising a wide variety of related
perceptual, cognitive, executive, and reasoning skills that under ideal conditions work to-
gether seamlessly. Because these systems depend on each other for full and efficient func-
tioning, an impairment or perturbation in any part of the network can interfere signifi-
cantly with the ability to learn and do mathematics. Math disability, therefore, is not unitary.
Rather, it appears to result from any number of cognitive glitches, impairments, and asym-
metries, often exacerbated by emotional and cultural issues or by instruction poorly
matched to the student’s way of thinking. For this reason, any evaluation of a student for
unexpected and debilitating difficulty in learning math must be comprehensive. Math dis-
ability also exists on a continuum with ability such that the severe difficulties of some indi-
viduals are not qualitatively different from the occasional troubles experienced by the rest
of us. Thus, the scientific findings pertain not just to students with severe and pervasive
math disabilities but to anyone who struggles with or feels uneasy around numbers. 

In addition, we argue that mathematics is difficult because the relevant cerebral net-
works, with one partial exception, are not inherently specific to number. Mathematics must
be learned, and teachers will be most effective when they understand their students’ unique
intellectual strengths and weaknesses. A number of pedagogical tools and techniques al-
ready on the market and in the classroom appear compatible with the scientific evidence,
but their effectiveness—for either the general classroom or for struggling students—has
only recently begun to be subjected to rigorous testing. Other simple techniques have
proven surprisingly effective. We review herein the handful of recent pedagogical studies.
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Our goal is to make the science of mathematical cognition accessible to a variety of
professionals, including both practitioners and academics. For practitioners—teachers,
psychologists, and other professionals in daily contact with confused and discouraged stu-
dents—we have synthesized the scientific findings in plain English, using the technical
terms of the academic disciplines when necessary, but supplying definitions as well as ex-
amples and illustrations for additional clarification. By including illustrative student
cases, we hope to bring the research findings to life and to convey the toll that our lack of
knowledge takes on frustrated students and, by extension, on the lives of adults and on
the economy and productivity of the nation. 

For academics—those doing the research—we provide a wide-ranging bibliography,
our gift to graduate students everywhere. Our review focuses chiefly on controlled stud-
ies, citing other work only when its insights seem especially pertinent. We alert all readers
at the outset, however, that many of the studies are small and narrowly focused; most need
to be replicated. Although many are excellent, some are methodologically flawed and
thus should be interpreted cautiously. This book was never intended to be the last word
on the subject—indeed, it is one of the very first words—and was written partly to provide
researchers with a starting point for their own future work.

In attempting to write a book that would be accessible to a diverse readership, we
elected to locate the scholarly apparatus in chapter endnotes. The advantage, as we see it,
is to make the text more readable by removing disruptive in-text citations. Moreover, doing
so left us free to cite more liberally, a benefit to academics wishing to mine the sources. 

As recently as 2006, American 15-year-olds scored below average in mathematics
among the world’s most prosperous countries.1 Thus this book should interest not only
teachers, psychologists, other practitioners, aspiring professionals, and researchers, but
also public policy officials and those whose curiosity is sparked by the national debate over
how to improve American mathematics education. 

Nancy Krasa

Note
1Organisation for Economic Co-Operation and Development, 2007, Table 6.2c.
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Section 

Thinking Spatially

When most people think of mathematics, they think about arithmetic facts,
equations, proofs, and the like. This math requires an ordered list of count-
ing words and matching written numerals. It also requires other language

that tells us what to do with the numbers, such as multiply or take the square root, or
that describes how shapes relate to each other, such as parallel or congruent. Further-
more, it includes a long list of rules that explain how they all work together. This is
the math we study in school. 

But what if mathematical language and symbols did not exist? Could people
think about quantity at all? Section I examines the intuitive side of mathematics and
how that intuition influences people’s grasp of the concepts that the conventional
symbols represent. The old philosophers appreciated that mathematical intuition is
intimately tied to one’s sense of space and time; by envisioning objects and events in
those dimensions, one comes to understand the structure of our universe, the stuff
of mathematics.1 These mental pictures help people not only to understand for-
mal mathematics, but also to gain new mathematical insights. As Albert Einstein fa-
mously remarked, 

Words and language, whether written or spoken, do not seem to play any part in my
thought processes. The psychological entities that serve as building blocks for my
thought are certain signs or images, more or less clear, that I can reproduce and re-
combine at will.2

Chapter 2 explores how spatial insight affects one’s understanding of number
and quantitative problem solving. Chapter 3 shows how it informs geometry, map and
model reading, and proportional and mechanical reasoning—significant branches
and applications of mathematics. In the course of that discussion, we also examine
how failing to form spatial images can compromise math achievement for some
students.

Notes
1See Boroditsky, 2000.
2As cited in Dehaene, 1997, p. 151.
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Chapter 

Number Sense

Science has demonstrated that humans are not alone in the ability to quantify.
Animals, which do not have “words and language, whether written or spoken,”
use numbers every day for survival.1 Across the phylogenetic spectrum from in-

sects to chimpanzees, survival of both the individual and the species depends on
quantitative skills to communicate, forage, evaluate threat, track offspring, optimize
breeding, and conserve energy. Animals’ remarkable quantitative abilities include a
sense of how many (e.g., eggs in the nest) and how much (e.g., distance from preda-
tors); some animals have even been trained to determine which one in a series (e.g.,
the third tunnel in a rat’s maze). Animals make these judgments based on informa-
tion obtained through all of their senses.2 

Even though they cannot yet talk, human infants also have a rudimentary sense
of quantity. For example, infants can distinguish two cookies from three and know
that adding to, or taking away from, a small number of toys brings predictable re-
sults. In studying infants’ mathematical skills, scholars debate two key issues. The
first is whether these very young children can clearly distinguish between how many
and how much. For example, in judging whether two cookies are the same as three
cookies, they may be basing their decision on the amount of “cookie stuff ” (i.e., the
surface area or volume of the cookies) or on the cookie numerosity (i.e., the count-
able number of cookies). (A note about terminology: In this book, we use various
terms for number. Numerosity refers to the amount of discrete things or events in a
collection and is a property of the collection itself. Numeral is the written symbol. We
use number generically, in the singular or plural, to denote discrete quantity regard-
less of format.)

Unfortunately, infants are too young to tell us what they are thinking. So far, re-
search has been inconclusive and the debate remains lively. For some scientists, the
resolution of this first issue hinges on the second key question: whether human
quantitative abilities are directly inherited from animals through evolution or rather
represent a specifically human adaptation of more basic shared perceptual skills.
Scholars continue to debate this thorny question as well.3

The Mental Number Line

Researchers do agree, however, that both animals and young humans have a rudi-
mentary sense of quantity. These primitive quantitative notions have two striking
qualities: They are relative and approximate. Without being able to count, both
animals and human infants judge quantities in relation to other quantities. For ex-
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ample, two cookies take on quantitative meaning only in relation to one cookie (i.e.,
more) or three cookies (i.e., less). Many animals live or die based on their skill at
determining more—pertaining not just to continuous amounts such as water, dis-
tance, or time, but also to discrete amounts of food bits, predators, and eggs. In-
deed, many creatures can weigh one factor against another in a truly remarkable
cost-benefit analysis. 

Young children first demonstrate a rudimentary, implicit sense of more around
the end of their first year or early in their second year, when they pick three cookies
over two. During their third year, when they can purposefully manipulate objects
and understand instructions (but before they can count reliably), children make ex-
plicit ordinal judgments (e.g., picking the “winner,” or larger, of two small collec-
tions of boxes). By age 5 years, children can compare numerosities from memory,
suggesting they have a mental representation or image of them.4

Because humans’ early idea of numerosity is relative and therefore ordered,
scholars posit that the concept of numerosity is fundamentally spatial—a mental
number line on which values are envisioned from small to large, much as a ruler
shows distance. Once that mental landscape is established, one can determine rela-
tive value by comparing locations on the imaginary line. In this manner, one can
mentally record and remember that 2 items are a bit fewer than 3 items and that 6
items are a lot more, regardless of the items. Distance along the line becomes a men-
tal analog for abstract number, much as an analog clock depicts time.

In one respect, however, this early, precounting mental number line does not
resemble a ruler; this difference has to do with the way people think about quantity
when they do not count. For example, without counting, one cannot determine ex-
actly how many birds are in Figure 2.1; at best one can match up the flocks, bird for
bird, to see whether any birds are left over—a time-consuming and impractical pro-
cess. Thus the second key feature of primitive quantification is that it is approximate. 

If the uncounted comparisons cannot be precise, how accurate are they likely
to be? To answer that question, we return to Figure 2.1: Which decision was easier,
A versus B or B versus C? Most people will find the first comparison to be easier. Ap-
proximate comparisons are governed by a psychophysical principle called Weber’s
law. According to Weber’s law, accuracy depends not only on the size of the values,
but also on their difference: The closer two values are to each other, the harder it is
to tell them apart. In other words, the ability to approximately distinguish two val-
ues from each other depends upon their ratio: the more similar the values (i.e., the
closer their ratio is to 1), the more difficult the distinction. Flocks A and B have 3
and 6 birds, respectively; thus their ratio is 1:2. Flock C has 7 birds, making the ratio
of flock B to flock C equal to 6:7—a value much closer to 1. Therefore, distinguish-

18 + Thinking Spatially

Figure 2.1 Without counting, can you tell whether Flock A is the same size as Flock B? What About Flock B and
Flock C?

A B C
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X Y Z

ing 6 birds from 7 birds is more difficult than distinguishing 3 birds from 6 birds,
when counting is not an option. The larger the collections, the greater the disparity
between them must be for someone to detect a difference without counting. If a 
6-bird flock lost 3 members, one would notice the difference; if a 100-bird flock lost
3 members, it would be undetectable. (By contrast, errors in exact counting arise
when one loses track; the higher the numerosity, the greater the chance of making
an error. Thus, exact counting error is simply and directly related to numerosity, not
to a ratio of numerosities.)5

Weber’s law applies to any sequential ordering along a discrete or continuous
dimension, such as the alphabet or linear distance. For example, without counting,
consider which letter is closer to the letter O in the alphabet: L or B? What about M
versus R ? Regarding Figure 2.2, which line is longer? Is it X or Y? How about Y ver-
sus Z? Weber’s law affects how people compare all kinds of ordered things: the
months of the year, weight, color, musical pitch, and numerosity.6

As children amass, sort, and distribute collections of things during the toddler,
preschool, and kindergarten years, they realize that the sizes of their collections vary
and develop a subjective impression of ordered numerosity. Unlike the usual, evenly
spaced (i.e., linear) number line that looks like a ruler, this earlier mental image re-
flects children’s greater familiarity with the small values that they use frequently,
know well, and can envision sharply and distinctly. By contrast, seldom-used larger
quantities are much murkier to young children, as it is harder to tell the difference
between two large sets of items if one cannot count them. Larger and less familiar
quantities seem less distinct and are therefore more difficult to compare. Preschool-
ers, for example, can distinguish four items from two but not from six items. A set
much larger than about five just seems like “a lot” to a preschooler; finer distinctions
are not yet possible. Thus, the early subjective mental number line looks peculiar,
with low values spread out at one end and the larger ones bunched up indistinguish-
ably at the other end. Mathematically speaking, these values are arranged more or
less logarithmically rather than linearly, as shown in Figure 2.3.7

Saul Steinberg’s classic “View of the World from 9th Avenue” imaginatively il-
lustrates this youthful mental number line. It depicts a myopic New Yorker’s per-
spective looking west: The artist renders the familiar neighborhood along New
York City’s Ninth and Tenth Avenues in great detail, much the way people clearly
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Figure 2.2. Without measuring, can you tell which line is longer, X or Y? What about Y versus Z?

A

B
51 2 6 7 8 103 4 9

0 1 2 5 6 7 8 103 4 9

0

Figure 2.3. Number lines. A) Linear. B) Logarithmic.
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“see” the small, frequently used numbers. Meanwhile, New Jersey, the rest of the
continent, the Pacific Ocean, and Asia occupy the leftover space. The view does not
offer a sharp geographic distinction between other cities, although it does vaguely
represent the general terrain. Similarly, large numbers are out there somewhere in
a child’s mind, but their exact locations are unclear.

20 + Thinking Spatially

When exact enumeration is not an option, the only possible view of quantity is
approximate and relative. Cultures lacking a counting system can describe and re-
member collections of objects only approximately, with a Weber-like error pattern
mirroring that of very young children.8 But what happens to these capabilities when
people learn to count? Counting—a uniquely human faculty tied to language—
allows one to enumerate and remember precisely and absolutely, and opens the
door to exact mathematics. For example, by counting, one can describe and remem-
ber the exact number of birds in each flock of Figure 2.1; one can also say with cer-
tainty which flock is biggest. In some ways, then, there are two entirely different ways
to understand quantity. The relationship between these two quantitative systems—
the relative and approximate versus the absolute and exact—is one of the most per-
plexing issues for cognitive scientists. 

“View of the World from 9th Avenue” © The Saul Steinberg Foundation/
Artists Rights Society (ARS), New York; reprinted by permission.
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Evidence of an embryonic mental number line is seen early in children learn-
ing how to count. Even 21⁄2-year-olds, when shown a row of three or four objects, will
add to or take away from it at one end rather than in the middle, suggesting they
think of amounts as a progression.9 Once children have mastered the basic counting
principles, around age 5 or 6 years, they can compare small, familiar quantities (e.g.,
2 versus 5), estimate small sums, and enter the number sequence without counting
up from 1.10 This earliest view of numbers is still highly subjective and zero-centric,
however. When young children are asked to place a number on a physical number
line with an end point that baffles them, they often simply count up from zero,
sometimes making hatch marks as they go—just as some New Yorkers may regard
the whole world from the viewpoint of Ninth Avenue. Children comprehend small,
recognizable numbers, but any forays into the unfamiliar territory of higher values
generally produce the errors predicted by Weber’s law. 

As children gain experience with larger numbers and the counting principles,
their mental number line begins to look more linear and they start to manipulate
numbers more accurately. In a series of studies, researchers gave pencil-and-paper
number lines with only a 0 on one end and 100 on the other end to groups of kinder-
garten, first-grade, and second-grade students. The children were asked to mark
where they thought certain numbers belonged, plotting each number on its own
separate number line. The response pattern was logarithmic for the youngest chil-
dren but became increasingly linear, and hence more accurate, for the older ones.11

Second-, fourth-, and sixth-grade students produced even more dramatic results
with a 1–1,000 number line. Most second-grade students and about half of the
fourth-grade students produced a logarithmic response pattern, whereas the older
children’s estimates were robustly linear, as illustrated in Figure 2.4.12 The investiga-
tors then wondered if the number line range might have influenced the children’s
accuracy. So they asked second-grade students to mark where certain numbers
should go on 0–100 number lines. As predicted, their responses were roughly accu-
rate. The children were then asked to locate those same numbers (i.e., all less than
100) on 0–1,000 number lines. In this larger, less familiar numerical neighborhood,
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0 4 6 12 33 61 10084 96
Grade 2

0 4 6 18 25 86 1,000230 390
Grade 2

780

B

0 6 25 36 230 1,000390 780
Grade 6

0 4 6 12 33 61 10084 96
Kindergarten

A

Figure 2.4. Estimated number placements. A) On a 0–100 number line, the results from kinder-
garten versus second-grade students. B) On a 0–1,000 number line, the results from second-
versus sixth-grade students. (Sources: Siegler & Booth, 2004; Siegler & Opfer, 2003.)Excerpted from Number Sense and Number Nonsense: Understanding the Challenges of Learning Math
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the children lost their bearings and produced estimates that assigned outsized pro-
portions to a few relatively small numbers, as shown in Figure 2.5.13

In third grade, children begin to think proportionally about the number line.14

As children learn to parse the numerical landscape and reason proportionally, they
can distribute numbers more accurately between the end points of bounded num-
ber lines. They also learn to use round numbers to moor their estimations. Going
back to the worldview of the myopic New Yorker, just as a few major cities and land-
marks protrude from this map, the familiar round numbers (5, 10, 20, 50, 100, 1,000)
stand out on the mental number line. They come into focus more clearly than the
surrounding countryside and thus can be used to locate other numbers. For exam-
ple, many people learn history by using key dates (1066, 1492, 1776) to orient them-
selves on the time line.15 In the same way, older children and adults often use such
landmarks as 250, 500, and 750 to anchor estimates on a 0–1,000 number line.16 This
manner of thinking is crucial to learning fractions, which depends on the idea that
the number line can be apportioned. With no natural counting sequence, fractions
derive their order and relative values from their places between 0 and 1 on the num-
ber line. By fifth or sixth grade, children can begin to track both apportionment and
numerical comparison to locate fractions on a number line.17

Just as travel can broaden one’s perspective, so children’s intellectual excursion
into the world of numbers can hone their quantitative sensibility, particularly
through their exposure to activities related to the number line. Children’s measure-
ment estimates (e.g., “If this line is 1 inch long, draw one that is about 5 inches long”),
numerosity estimates (e.g., “Guess how many candies are in the jar”), and number
categorizations (e.g., “Is this number big or small?”), like their number-line place-
ments, all start out logarithmically distorted and become more linear with age and
experience. In studies, children who were good at one kind of estimation task
tended to be good at the others, suggesting that estimation skills all rely on a single
mental representation of quantity.18 (Interestingly, preliminary findings suggest that
girls may lag somewhat behind boys in developing number-line skills. The reason for
this is not known and the results have not yet been replicated.19)

Although familiarity with the numerical neighborhood is key to understanding
mathematics, people typically develop the skill only so far. Unless one is an as-
tronomer or works at the U.S. Office of Management and Budget, even most adults
do not truly understand that 1 billion is only 1/1,000 of 1 trillion (see Figure 2.6).
A billion and a trillion are simply synonymous with a whole lot to many people.
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Figure 2.6. To many people’s surprise, 1 billion is only 1/1,000 of 1 trillion. 
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Figure 2.5. Estimated number placements of second-grade students on A) a 0–100 number line and B) a 0–1,000 num-
ber line. (Source: Siegler & Opfer, 2003.)
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Just as people can visualize numerical relations, so can they conjure arithmetic
operations visually on a line. One can imagine arithmetic as distances between two
points (subtraction) and increments along the line (addition), as illustrated in Fig-
ure 2.7, and as repeated increments (multiplication) and equal apportionment (di-
vision). Of these, subtraction translates most easily to a spatial analog because it
simply involves comparing two points. Although demonstrating multiplication on a
physical number line as repeated addition is a valuable teaching tool, the values
quickly become too large and complex for the number line to be useful as a mental
template on which to routinely conduct the operation. For this reason, children usu-
ally learn the multiplication table verbally.

Preliminary efforts to develop kindergarten math screening tests have consis-
tently found that performance on questions of numerical comparison, on and off
the number line, was one of the strongest predictors of math achievement in the
first few grades.20 Throughout the elementary years, children’s math achievement
has been linked to number-line skills and estimation ability in all its applications.21

It is clear that math ability depends on one’s grasp of the most fundamental con-
cepts: numerical values and their relationships. 

For most people, ideas about number mature; they learn to estimate reasonably
and calculate precisely. However, that does not mean that they never again think of
number subjectively. In fact, Weber’s law is always lurking; people are most likely to
succumb to it when they are in a hurry or cannot count or calculate. Often in daily
adult life, people need to solve a problem quickly or estimate the size of a crowd; on
those occasions, they tend to draw on their subjective impressions. For example, an-
swer this quickly without calculating: Is it true that 4 � 13 � 60? What about 4 � 13 �
19? Most people find the first question easier to answer than the second because the
target number is farther from the true sum—an example of Weber’s law at work.22

Number and the Brain
How does the brain actually code quantitative information? Advances in imaging
techniques that can map brain activation during mental activity provide insight into
how the brain “knows” number. Studies of individuals engaged in mathematical
thought show that the brain’s surface (cortex) becomes active in part of a channel
on each side (hemisphere), known as the intraparietal sulcus (IPS; Figure 2.8). The
IPS (plural: intraparietal sulci) are highly sensitive to number, regardless of whether
it is presented in spoken (“six”) or written (six) word format or as a numeral (6 ).
Moreover, most scholars also agree that the IPS activate in response to concrete nu-
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Figure 2.7. Arithmetic on the number line. A) 9 � 7 � 2. B) Decompose 15 to visualize 28 � 15 � 28 � 2 � 10 � 3 � 43,
or 43 � 15 � 43 � 3 � 10 � 2 � 28. 
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merosity (******) (e.g., when people compare arrays of dots without counting). As
discussed in Chapter 6, the IPS become more sensitive to number as children de-
velop. The IPS encode number only approximately, however, and have difficulty dis-
tinguishing two values with a ratio close to 1.23 The IPS are most active when people
compare or estimate quantities, subtract one quantity from another, find the mid-
point between two numbers, judge the relative proximity of two values to a third
value, and manipulate quantities—that is, when people engage in tasks that can be
easily envisioned on a number line.24

Significantly, the IPS are embedded in brain regions dedicated to a wide variety
of visual-spatial functions. These regions are part of the spatial (i.e., “where”) visual
pathway connecting visual perception to muscle activities, particularly those involv-
ing the hands, and processing information about objects’ location.25 (The “what” vi-
sual pathway, also variously referred to as the iconic or object pathway, by contrast, spe-
cializes in identifying objects, as well as distinguishing color and shape, and is routed
elsewhere.) Difficulty with quantitative manipulations is linked to various medical
conditions, such as Gerstmann and Turner syndromes, characterized by damage in
this region.26 Preliminary behavioral data from research in progress suggests a likely
association between spatial skill and number-line placement accuracy among typi-
cally developing primary-grade students.27 Moreover, as discussed in Chapter 6, IPS
abnormalities have been linked to math learning disabilities in children.28

Indeed, several behavioral studies of individuals with brain injuries strongly
suggest that people think of numbers and their relationships in visual-spatial terms,
as if they could actually see them lined up from small to large along a real line in their
minds. For example, one study examined individuals with right-hemisphere brain
injuries resulting in hemianopia. In this condition, people lose awareness of their
left visual field; when asked to draw figures, they tend to minimize or omit the parts
that would be seen to the left of center. The individuals in this study revealed a
marked inability to name the midpoint between two numbers (e.g., naming the mid-
point between 11 and 19 as 17), even when they did the problem without paper or
pencil and responded orally. That is, they committed mental errors similar to the
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Figure 2.8. View of the brain’s left hemisphere, showing the quantity-sensitive intraparietal
sulcus (IPS) and surrounding visual-spatial region, as well as the areas activated by incoming
visual perceptions and by manual tasks. These functions also reside in the right hemisphere.
(Sources: Ansari, 2008; Jordan, Wüstenberg, Heinze, Peters, & Jancke, 2002; Simon, Mangin,
Cohen, LeBihan, & Dehaene, 2002.)
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more concrete ones such individuals typically make when asked to mark the mid-
point of a horizontal line on paper.29 Figure 2.9 illustrates what the verbal error of
an individual with hemianopia might look like on paper and, presumably, in the mind.

It may seem that all spatial sense is necessarily tied to vision, and research often
conflates the terms spatial and visual-spatial. The distinction between them with re-
gard to number sense is not clear, however. A potentially fruitful line of research on
the role of purely spatial ability would be to investigate the mental representation of
number in individuals who were born blind. One aspect of congenital blindness is
that the knowledge of quantity is restricted to sequential auditory and tactile input
with the consequent additional memory burden, or to small numerosities of hand-
held objects. Young blind children do not use their fingers for counting, but instead
use a double-counting system when counting aloud and estimate the results of sim-
ple calculations based on a sense of “many-ness” obtained tactilely.30 More research
into vision’s relevance to the development of number sense is warranted.

Number Sense and Number Nonsense
Through instruction and experience with quantities, children become familiar with
numbers and develop a reliable mental picture of how they relate to each other. A
firm grasp of relative quantity fosters more varied problem-solving strategies, more
courage to estimate, better judgment about the reasonableness of a solution, and
even easier fact retrieval.31 This confidence with quantities and their mental manip-
ulation can be regarded as number sense. As psychologist Ann Dowker remarked, 

To the person without number sense, arithmetic is a bewildering territory in which
any deviation from the known path may rapidly lead to being totally lost. The per-
son with number sense . . . has, metaphorically, an effective “cognitive map” of that
same territory, which means such deviations can be tolerated, since the person can
expect to be able to correct them if they cause problems and is unlikely to become
lost in any serious sense.32

Most—but not all—children bring an intuitive quantitative sense with them on
their first day of kindergarten.33 For many of those who do start out with a rudimen-
tary grasp of quantity, however, digits often become disembodied from their values
and technical arithmetic skills become unmoored from number sense in the course
of conventional mathematical education. Sometimes, students rediscover their num-
ber sense through computational simplification, like rounding, late in elementary
school.34 However, some students never regain their quantitative intuition and con-
tinue through life performing calculations mechanically, without any real idea of
what the computations mean. Other students move easily between exact calcula-
tions and intuitive approximations, enabling them to tackle unconventional prob-
lems, use time-saving short cuts, and devise creative solutions. (In this regard, boys
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Figure 2.9. A patient with hemianopia responded, “Seventeen,” when asked, “What is the midpoint between eleven
and nineteen?” (Source: Zorzi, Priftis, & Umiltà, 2002.)
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on average again seem to have an advantage, at least in adolescence; psychologists
are trying to find out why.35) 

Like hapless Calvin, some people either lack number sense or do not use it; in
fact, most people seem to favor exact—but often poorly understood—numbers.36

Businesses understand this concept (indeed, they bank on it) when they price $10
items at $9.95, knowing that many customers will be oblivious to the proximity of 
the latter price to the former. Weak understanding of what numbers actually mean
and how they relate to each other—call it number nonsense—creates a disadvantage
at school and in life when one must verify that calculation results are reasonable or
understand a computation’s implications.

When children fail to develop number sense, it may lead to other serious math
problems. Studies of primary-grade students with severe math impairment found that
they were slow to make numerical comparisons (e.g., answering “Which is bigger, five
or four?”) or made immature number-line placements—both hallmarks of poor num-
ber sense. Their slow recital of the counting sequence also suggested a weak grasp of
number order, and many had significant difficulty on all other number tasks as well.37

Tenuous number sense may explain why some young students fail to add using the
minimum addend strategy, a common early addition method whereby students deter-
mine the larger addend and count up by the smaller term (e.g., 6 � 3 � “six . . . seven,
eight, nine”). These students may simply not be able to decide which number is the
bigger addend or to enter the number sequence at any place other than “one.” Be-
cause of these difficulties, many such students also fail to master arithmetic facts.38

Whereas number sense is closely related to spatial skill, it appears to be quite
distinct from some other cognitive skills, such that impairments in one do not imply
impairments in the other. For example, some children with receptive and expressive
language impairments or dyslexia are able to compare values even if they cannot
name or read them, presumably because they understand the relation of one quan-
tity to another.39 Thus, having a viable mental number line may be regarded as a cog-
nitive function at least partially independent of some other learning-related skills,
and compromised number sense may account for some children’s math learning
difficulties. In fact, severe mathematical disability with no other learning difficulties
is not unusual. Most large-scale studies have identified groups of students who have
math impairments but no other significant learning disabilities. Future behavioral
and neurocognitive research promises to further elucidate the relation between
some mathematical disability and impairments in number sense, in the neural cir-
cuits that support it, and perhaps in spatial skill.
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Difficulty with number lines + + + + + + + + + + + + + +

Emily is a lively 13-year-old with an outgoing personality. Her birth and early develop-
ment were typical and milestones were on schedule. Now, in seventh grade, her math
teacher reports that she seems to lack sense of what numbers mean. She calculates
inefficiently and entirely by rote without understanding what she is doing or why.

When asked to place a series of numbers on individual 0–100 number lines, Emily
showed the perspective on numbers typically seen in kindergartners and first graders, 
in which small numbers seem bigger than they are.
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Emily is even less at home in the world of larger numbers, with which seventh
graders should be familiar. In locating numbers between 0 and 1,000, she nearly filled
the range with numbers less than 100, and she was baffled about the relative values of
numbers greater than 100.

Without a reliable, realistic mental representation of ordered quantity, Emily is left
with only rote procedures, making mental math especially challenging. For example,
when asked (in language she could understand) to mentally subtract 3 serially, begin-
ning at 35, she slowly responded, “Thirty-five, thirty-two, thirty, thirty-six, thirty-three,
zero.”

Emily received very little prior math instruction using the number line. She learned
to calculate using a form of counting, and her teacher’s efforts to get Emily to try an-
other method have been unsuccessful. Studies of the effectiveness of intensive num-
ber-line instruction to establish a reliable mental number line have focused on much
younger children. Testing revealed that Emily’s spatial skills are adequate, so it is pos-
sible that she would benefit from such instruction.

Classroom Implications
The most difficult aspect of teaching math to young children is to keep their num-
ber sense alive and to foster a connection between it and conventional mathemat-
ics. Because number sense seems to depend on a reliable mental number line, re-
searchers are now exploring concrete number-line activities, which represent
numbers physically as they are represented mentally, as a potentially effective way to
teach students about number. 

Number lines are not new to the classroom. Teachers have long used number
lines created from common objects, including pencil and paper, plastic strips, card-
board tubing, bead strings, linear numerical board games, rulers, calendars, and
thermometers—not to mention the chalkboard number line at the front of the
classroom. One popular device consists of rectangular sticks of graduated lengths—
referred to here generically as number blocks—that can be lined up along a number
line or track. More recently, computerized versions of these activities have become
available.40
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Like discrete manipulatives, such as buttons or beans, these linear analogs
teach cardinality, ordinality, and equality; they can be introduced in tandem with
conventional notation and algorithms. Unlike buttons and beans, however, a num-
ber line provides fixed visual images (analogs) for potentially unlimited values 
and is ordered and systematic; moreover, it represents number the way the brain
does, linking counting to linear measurement.41 Number lines can also illustrate the
conceptual underpinnings of nearly all elementary number skills, including in-
equality, numerical comparisons, arithmetic transformations, fractions, decimals,
measurement, and negative numbers. Buttons and beans represent quantity as we
most often encounter it in life, as random collections; the number line provides a
schematic image or mental template that children can rely on and abstract from. 

Research with young students suggests that employing number lines in the
classroom can significantly improve numerical understanding. For example, help-
ing kindergartners sort the numerals 1–100 into equal-sized piles of very small, small,
medium, big, and very big numbers effectively provided the students with a linear (and
thus more accurate) sense of numbers in that range.42 First-grade students im-
proved their understanding of missing-addend problems using number-line based
instruction incorporating practice and feedback.43 First-grade students also improved
in both number-line accuracy and addition skills using computerized number-line il-
lustrations of addends and sums.44 Instruction using unmarked number lines en-
abled third-grade students to develop both flexible strategies and procedural com-
petence with multidigit addition and subtraction.45 Simply correcting second-grade
students’ most discrepant number placement (typically 150 on the 0–1,000 number
line) produced particularly dramatic recalibration.46 (Researchers do not yet know
whether this technique is as effective with children whose view of number is signifi-
cantly impaired.) Teaching college students to diagram analog-friendly word prob-
lems with number lines significantly improved the students’ accuracy—more than
simply rewording the problems did—and even improved performance on more
complex problems.47 Unfortunately, we have not yet seen any research on the effec-
tiveness of number line pedagogy for children in the intermediate, middle, or sec-
ondary grades; such investigations are certainly warranted.

Many preschool and kindergarten children from low-income families without
access to certain types of board and other number games have difficulty answering
questions such as, “Which is bigger: five or four?”—a quantitative task that poses
little trouble for other children of the same age. For these children, number-line ac-
tivities such as linear numerical board games, which help them link the quantities
indicated by spaces counted along a line, dots on dice, numbers on spinners or
cards, distance moved, and duration of play have proven particularly useful. Re-
searchers caution, however, that children should count out their moves according
to the spaces on the board (e.g., “seventeen, eighteen, nineteen . . . ”), not accord-
ing to the value on the dice or spinner (e.g., “one, two, three . . . ”), to connect the
counting sequence to the number line.48

In one study, four 15-minute sessions using a simple linear numerical board
game brought one group of underprivileged preschoolers up to the level of their
middle-class peers in terms of number-line estimation, magnitude comparison,
counting, and numeral identification—gains that remained 9 weeks later.49 Another
research-based program for children in prekindergarten through second grade, fo-
cusing on integrating traditional object counting with diverse child-friendly number-
line activities, met with similar success. In addition to numerical board games, these
activities included using thermometers and counting off as children queued up for
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recess—simple daily classroom activities that teachers can implement easily.50 Ex-
plicit number-line instruction led to significantly greater improvements than did
nonnumerical board games, counting activities such as card games, prereading in-
tervention, textbook number-line illustrations without instruction or feedback, or
traditional math lessons that did not use number-line activities or stress relative mag-
nitude. In short, simple number-line techniques have proven exceptionally fruitful
for young children at risk of math difficulties. Alert teachers can find additional lin-
ear counting activities in many common settings (e.g., counting steps in flights of
stairs or rungs traversed on the monkey bars; playing hopscotch).

The success of early number-line instruction suggests that interventions based
on number-line thinking may also prove effective in keeping children’s number
sense alive while they master arithmetic algorithms. For example, when a child for-
gets to carry (e.g., 19 � 6 � 15), a leading conceptual question (e.g., “When you add
something to 19, would you expect the answer to be bigger or smaller than 19?”)
may be more useful than an admonition focused on procedure (e.g., “Don’t forget
to carry!” or “Check your work!”). We have not seen any rigorous investigation of the
effectiveness of such number-sense interventions versus those oriented to arithmetic
procedures; such research would provide useful guidance for teachers.

One function for which a number-line approach has proven particularly useful
is big-number subtraction, where it helps students avoid some of the pitfalls associ-
ated with using the algorithm.51 For example, when asked to mentally subtract 3 se-
rially from 35, a student struggling to use the algorithm might respond “thirty-five,
thirty-two, thirty-nine, thirty-six, thirty-three . . . .” In contrast, the transition across
30 poses less of a stumbling block if the student can envision the subtraction on a
number line.

Earlier, it was noted that some students rediscover number sense when they
learn rounding rules and computational estimation late in elementary school. Com-
putational estimation must rely heavily on number sense if it is to be useful in daily
life. Many people do not estimate very well because it is a complicated task involving
approximating a set of numbers, keeping track of all the estimates, doing mental
arithmetic with them, and adjusting the results to compensate for the simplifica-
tions. Most students take a long time to master this mental juggling act, often well
into high school.52 Nevertheless, one of the key components of this skill—a thor-
ough familiarity with numbers and their number-line neighborhoods—is accessible
to much younger children. The typical classroom expectation is for all answers to be
precise and for rounding to follow certain rules, but that often causes many cautious
students to be less tolerant of approximations as they get older. Conversely, if stu-
dents develop an intimate knowledge of the number line at a young age, they may
be ready for the more complicated estimation tasks later. For example, students can
learn to recognize “friendly neighbors”—numbers they can call on, such as 20 or 25,
when unwieldy numbers such as 23 are giving them trouble. Further research on the
effect of early number-line instruction on downstream computations is certainly
warranted.

Although number-line instruction looks very promising, many pedagogical ques-
tions remain unanswered. For example, little is known about the relative effective-
ness of manipulatives, such as cardboard tubing, versus paper-and-pencil number
lines versus computer software engineered to illustrate the same lessons. Each ap-
proach has advantages: Objects feature a tactile component, software permits inter-
active and speeded exercises designed to foster skill fluency, and paper and pencils
are cheap and accessible. The relative effectiveness of marked versus unmarked
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number lines is also unknown, although preliminary research suggests that un-
marked number lines may be more engaging and foster development of more vari-
able strategies, even for students with impaired math skills.53 The effect of color (an
iconic feature) should also be tested: When number blocks are color coded, as most
are, are students distracted from mastering the necessary association between num-
ber and length? Which number-line direction is more effective, vertical or horizon-
tal? Do students have trouble switching from one to the other? Does the mental
number line extend to negative numbers? What is the most effective way to teach
negative numbers?54 These questions remain largely unanswered.

Because number-line activities are chiefly nonverbal, some learning disability
experts tout their particular usefulness in teaching students with language and read-
ing disabilities; however, that claim has not been scientifically verified. More re-
search is also needed on whether and how number-line instruction might be effec-
tive with older students and students whose impairments are spatial or visual rather
than linguistic. In general, further research is warranted on the effectiveness of
number-line instruction at all grade and ability levels and for students with a variety
of cognitive profiles. 

Conclusion
Long before most children see the inside of a formal classroom, they know some-
thing about number. They know that three cookies are more than two cookies and
that if someone takes one cookie away, there will be fewer. They have vague ideas
about a lot and a little that become sharper as they get older. As children learn to
count and gain experience with numbers, they develop a mental image of how quan-
tities relate to each other: a mental number line on which each number has its place,
like inches on a ruler. Indeed, quantities are coded in the region of the brain that
specializes in spatial functions; knowledge of number is intimately tied to that spa-
tial sense. 

Many children develop an easy familiarity with quantity—number sense—as they
gain mathematical experience. With a reliable mental number line, they have a cog-
nitive map that keeps them oriented as they wander through the unfamiliar terrain
of school mathematics. Some children, however, lose their early comfort with quan-
tity as they struggle to master arithmetic rules and procedures; others seem never to
develop this comfort with numbers at all. It is not yet known why this is so, but re-
search suggests that spatial difficulties may contribute to some children’s number
problems. For young children at risk for math failure, classroom number-line activ-
ities have demonstrated improvement in number sense. Chapter 3 continues the in-
vestigation of the relationship between spatial skill and math, looking beyond num-
ber to other mathematical branches and applications: geometry, way finding, and
proportional and mechanical reasoning.
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